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Abstract. Simple methods are described for constructing the Weyl orbits of exceptional 
Lie algebras and for identifying the orbit of an arbitrary weight. The methods make use 
of convenient bases in weight space. They are applied to Gz ,  F4 ,  E, and E.. A complete 
table of all weights of all orbits of F., is given. The weights of the 37 orbits of smallest 
weight length of E,  and E ,  are given in tabular form. The depth structures of the orbits 
are discussed. 

1. Introduction 

Any method of constructing irreducible representations (irreps) of simple Lie algebras 
must make use of Weyl reflection symmetry if it is to be efficient for large irreps. The 
construction problem may be separated into two parts. The first part consists of finding 
all the Weyl orbits in an irrep and their multiplicities. The second part consists of 
finding all the weights in each orbit. One of the earlier authors to emphasise this 
approach was Humphreys [ 11. 

Simple general algorithms exist for the first part [2,3]. Furthermore, extensive 
tables exist that list the multiplicities of all Weyl orbits in many irreps of all the simple 
Lie algebras [4]. The present paper is concerned with the second step, finding the 
weights in each orbit. A closely related problem, also discussed, is finding the orbit 
of any given weight. 

For each of the classical algebras A,, B,, C, and D,, special orthogonal bases are 
known in which the rules for Weyl reflections are particularly simple [5, table 21. In 
these bases the orbit corresponding to a particular weight may be obtained almost 
immediately. We are concerned here with the exceptional algebras, for which the 
situation is not quite so simple, It is helpful to use a basis appropriate to a classical 
subalgebra of the exceptional algebra in question. In a previous paper [3] the author 
used a basis that is natural for D8 to construct many of the orbits of E,. A fast 
procedure was given for finding the orbit of any given weight. 

The main purpose of this paper is to extend the results of [3] to the exceptional 
algebras G,, F4,  E6 and E,. The classical subalgebras used for the bases are, respec- 
tively, SU(3), S 0 ( 9 ) ,  SU(3) x SU(3) x SU(3) and SU(8). The reasons for these choices, 
and a short discussion of other possible choices, are given in $ 8. In the cases of G2 
and F4, formulae for all weights of all orbits are given. The geometrical classification 
scheme proposed recently by the author [6] is used to help picture the structures of 
the orbits. 

The numbers of subalgebra orbits in orbits of E6 or E ,  are sufficiently large that 
one cannot list all weights of all orbits in short tables. The results for these two algebras 
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are presented in two ways. First, a fast iterative procedure is given for finding the 
orbit of an  arbitrary weight. Second, tables are given that list the weights of the 37 or 
more shortest orbits (orbits with shortest weights). The results for G Z ,  F4, E6 and E ,  
are given in 00 4-7. 

The root sets of the exceptional algebras in these special bases are well known. 
The new features of the method are the fast procedures for identifying and  constructing 
orbits. These procedures depend not only on the subalgebra, but also on the choice 
of an  ordered set of orthogonal axes, and the consequent set of roots that are simple. 

2. The method 

Before discussing the method we review briefly some of the basic concepts and  
definitions that are used. Proofs may be found in the literature, for example, in Cahn 
[7]. We consider a simple Lie algebra of rank n. An ordered set of orthogonal axes 
is chosen in the n-dimensional weight space. A weight is defined as positive if its first 
non-zero component is positive. A simple root is a positive root that cannot be written 
as a sum of two positive roots. If R,  ( i  = 1 to n )  are the simple roots and M is an  
arbitrary weight, the Dynkin components m, of M are defined by the scalar product 
equation 

The length squared of any weight M is given in terms of its Dynkin components by 
the equation 

M 2  = 1 mIm,G,,. 
IJ 

where G is the metric tensor, tabulated by Slansky [8, table 71. 

M into S , ( M ) ,  defined by 
The Weyl reflection Sa associated with the non-zero root (Y transforms the weight 

S , ( M ) =  M - (a ,  M)(~/ (Y’) (Y.  (2.3) 

If (Y is the simple root R I ,  it is seen from (2.1) and  (2.3) that 

S , ( M )  = M - m,R,. (2.4) 

All the weights that may be obtained from a weight M by sequences of zero or more 
Weyl reflections comprise the Weyl orbit of M. 

A dominant weight is defined to be a weight with no negative Dynkin components. 
There is exactly one dominant weight in each Weyl orbit; this weight is used to 
characterise the orbit. Let M 2 +  be the dominant weight of the orbit T that contains 
the weight M. It is well known that the dimension DT of the orbit is given by 

D T = D ( G ) / D ( G o )  (2.5) 

where D ( X )  is the order of the Weyl group of the algebra X and Go is the algebra 
that corresponds to the Dynkin diagram of G with all circles (and connecting lines) 
deleted that correspond to positive Dynkin components of M 2 +  [ 9 ] .  If all mf’ are 
positive the orbit is called maximal, and  D(Go) is defined to be one. 
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The bases used in this paper have been obtained by the replacement procedure 
described previously [lo]. However, for simplicity, I d o  not refer to this procedure 
when defining the bases in $54-7. Each basis is defined in the following way. For 
the nth rank exceptional algebra G under consideration, a classical subalgebra H of 
the same rank is specified. The roots of G consist of all the roots of H plus all the 
weights of some other representation of H. 

The orientation of the ordered set of axes is then specified. This leads to the 
identification of the simple roots of G and  H. The procedure is such that all but one 
of the simple roots of G are simple roots of H. The other simple root of G, which is 
not a root of H, is called the replacement root. The first axis is oriented to be orthogonal 
to the subspace generated by the ( n  - 1 )  simple roots of G that are roots of H. The 
first component of the replacement root is positive, of course. 

In these bases every Weyl orbit of the exceptional algebra G is the union of one 
or more complete orbits of H. In order to understand how these bases simplify the 
construction of orbits, we examine first the standard construction method in the Dynkin 
basis. A simple reflection is defined as the Weyl reflection associated with a simple 
root. It is seen from (2.4) that the simple reflection S, of a weight M leads to a more 
positive weight, more negative weight, o r  the same weight if the Dynkin component 
m, is negative, positive or  zero, respectively. A positive simple reflection series of a 
weight is defined as a series of simple reflections, each of which increases the positivity 
of the weight. If one wishes to find the Weyl orbit of a weight M the standard method 
is to apply a series of positive simple reflections until the dominant orbit weight is 
obtained. Similarly, the standard method of constructing the whole orbit from the 
dominant weight is by applying the possible negative simple reflection series. An 
example is given by Moody and Patera [9]. The disadvantage of these procedures is 
that the number of reflections in such a series may be as large as the number of positive 
roots in the algebra. 

However, if one uses a basis of the type discussed here, all simple Weyl reflections 
are trivial except those associated with the replacement root. This shortens the construc- 
tion procedure greatly. The construction is facilitated by the fact that the first orthogonal 
component of a weight measures the component of the replacement root, since this is 
the only simple root with a component in the first direction. 

In some cases we will classify weights by using the geometrical classification 
parameters introduced in a previous reference [6]. For each weight M, the signature 
of a positive root 7,  is defined to be negative if 

( 7 8 ,  M )  < 0. (2.6) 

Otherwise the signature is positive. Each weight may be classified by the list of positive 
roots with negative signatures. The depth N of the weight is the number of T, in the 
list. This depth is the same as the number of terms in a positive simple reflection series 
from M to M”. 

Each orbit belongs to one of a finite number of patterns, where a pattern is defined 
by the set of Dynkin components of the dominant weight M 2 +  that are zero. The set 
of signature lists that denote the weights of an  orbit is the same for all orbits of the 
same pattern. The depth of M 2 - ,  the most negative weight of an  orbit, is called the 
orbit depth and is given by 

(2.7) N (  M 2 - )  = P (  G) - P (  Go) 

where P ( X )  is the number of positive roots in the algebra X .  
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3. The SU(n) bases 

Three of the bases used in this paper are based on S U ( n )  algebras; we discuss some 
general features of these bases here. The standard orthogonal basis for the ( n  - 1)th 
rank algebra S U ( n )  involves the introduction of an extra, nth, dimension, and the 
projection of the weights on a particular ( n  - 1)-dimensional subspace [ 11, appendix 
A]. In  order to avoid this complication we use an alternative procedure. This procedure 
makes use of the fact that in order to determine simple roots and construct irreps and 
orbits, i t  is not necessary to know the exact orientation of the orthogonal axes. 

The non-zero roots are of the type (q? ) ,  where q and r are different weights of the 
fundamental representation N, and F = - r  is the conjugate to r, a weight in the conjugate 
representation N. The scalar products of these weights are 

q 2 =  ( n  - l , / n  (q ,  r )  = - l / n .  (3.1) 

However positivity is defined, I number the weights of the irrep N in order of positivity, 
with 1 being the most positive. The positive roots are then those of the type (jf) where 
j < 1, and the simple roots are those with adjacent indices, i.e. 

R, = ( j j q ) .  (3.2) 

If A, are the Dynkin components of a weight .1, n integers f ;  are introduced that 
satisfy the equations 

A,  = A  - A + ,  . (3.3) 

Clearly the A, are unchanged if all 4 are increased by the same amount. Hence, one 
additional condition must be used in conjunction with (3.3) to determine the J;.  I 
make the requirement that this condition be invariant to permutations of the f ; .  One 
condition, used frequently, is f;(minimum) = 0. If the weight A is dominant, then 
f ;  zj;+, , andf;  is the number of boxes in t h e j  row of the Young tableau that represents 
the irrep with highest weight .I. If one constructs a weight M from weights of the two 
fundamental representations, then J ;  is the number of weights j minus the number of 
weights J in M. The advantage of the integers f ;  (called here tableau components) is 
that they behave in a simple manner under Weyl reflections. It is straightforward to 
show that the reflection generated by the root (jf) interchanges 4 and f; and leaves 
all otherf; unaffected. Consequently, the Weyl orbit of a weight consists of all possible 
distinct permutations of the J ; ;  the dominant weight is the permutation that satisfies 
the condition f ;  . 

When S U ( n )  bases are used for exceptional algebras in 0 0  4, 6 and  7, a further 
assumption concerning positivity is necessary. It turns out that it is sufficient to specify 
the orientation of the first orthogonal axis. 

4. The algebra C2 

The subalgebra chosen is SU(3). The 14 roots of G2 are the SU(3) roots plus the 
weights of the two fundamental representations 3 and 5 .  The properties of this G2 
basis are well known and  the multiplicities of the weights in the Gz irreps have been 
given by King and Qubanchi [12]. Therefore, I will give only a brief discussion of 
Gz, as an illustration of the technique discussed in 5 2 .  
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As in O 3, I label the weights of the irrep 3 in order of decreasing positivity A, B 
and C. The first orthogonal axis is chosen in the direction of the conjugate weight c. 
The positive roots are then ( A B ) ,  ( B E ) ,  ( A E ) ,  A, B and E. The first three (long) 
roots are taken of length a, in which case the latter three (short) roots are of length 
(2/3)1'2. The simple roots are 

R I  = ( A B )  and R 2  = 13. (4.1) 

The replacement root is the short root B. 

are related to the tableau components f4 ,  fB and fc (defined in § 3) by 
The two SU(3) Dynkin components of a weight are denoted by A A  and A B .  These 

A A  = f A  -fB A B  =fB - f c .  (4.2) 

It follows from (3.1) that the scalar products of the weights of the fundamental 
representation with an arbitrary weight M are 

(4.3a) ( A ,  M )  =;(2fA -fB -f( ) = ~ ( ~ A A + A B )  

(4.3b) 

(4.3c) 

It follows from (2.1), (4.1) and (4.3a, b )  that the G, Dynkin components m ,  and m, 
are related to the A by 

m ,  = A A  mi= Ag - A A .  (4.4) 

The set of weights for an  algebra is the set of vectors with integral Dynkin components. 
It is seen from (4.4) that the set of G2 weights and the set of SU(3) weights are identical. 

A Weyl orbit may be generated from any contained weight by simple reflections 
only. The only simple G2 reflection that can connect different SU(3) orbits is that 
associated with R 2 ,  the weight B. The SU(3) Dynkin components of B are (-1 1). It 
follows from (2.3) and (4.3b) that the effect of the G2 reflection S2 on the SU(3) 
components of a weight is 

S?(AAAB)  = ( A B A A ) .  (4.5) 

However, ( A E A A )  is a weight in the SU(3) orbit conjugate to the orbit of ( A A A , ) .  

Therefore every self-conjugate SU(3) orbit is an  entire G2 orbit. If an  SU(3) orbit 0 
is not self-conjugate, the G2 orbit is 0 + O*. ( In  terms of weights of the fundamental 
SU(3) representations, the S2 reflection is equal to the simultaneous transformations 
B 5 B and A 5 c.) 

Since G2 is of second rank the Weyl reflection lines and enclosed sectors may be 
plotted in a plane. Each of the 12 sectors is an open wedge of width 30". I f  one uses 
the basis discussed here, and  chooses the positive first axis to be the upward vertical 
axis, the orientation of the diagram will correspond to the conventional orientation 
for the fundamental irrep of SU(3); the long root ( A B )  will lie on the positive horizontal 
axis. The G2 roots are plotted in many references, for example Georgi [13]. 

5. The algebra F4 

In the case of F4 it is equally efficient to use as the subalgebra B,[S0(9)] or C,. I 
will use a B4 basis because rotation groups are familiar; furthermore, if F4 is a 
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meaningful symmetry group of particle physics, it is likely that the rotation group 
distinction between tensors and  spinors is physically significant. Recently, Neuberger 
has discussed F4 [14]. The roots and co-roots of this reference are those obtainable 
from a C, basis, and a B4 basis, respectively. 

There is a well known, convenient orthogonal basis for B,, in which the 24 long 
roots are [ i l  z1 0 01 and the corresponding weights with components permuted, and  
the eight short roots are [*l 0 0 01 and the weights with components permuted [5]. I 
will use the shorthand notation 1+3- = [ 1 0 - 1  01, 2- = [ 0  - 1  0 01, etc. The simple B4 
roots are 

1+2-,  2 + 3 _ ,  3+4- and 4, .  (5 .1)  

The weights are all vectors with integral Dynkin components. It follows from (2.1) 
and (5.1) that the B, weights are of two types. The tensor weights are all vectors such 
that each orthogonal component is integral. The spinor weights are all vectors such 
that each component is half-odd integral. 

The effects of Weyl reflections are simple in the special basis. The symbol f ;  is 
used to denote the j t h  orthogonal component. The Weyl transformation associated 
with the long root i+k-  (or L k + )  leads to the component transposition f; % f k r  the 
reflection associated with the long root i+k+ (o r  i - k - )  leads to the transformation 
f; % -fk, and the reflection associated with the short root i+ (or i-) leads to f; + -f;. 
Therefore, the Weyl orbit of a weight consists of all possible distinct permutations of 
the orthogonal components, with all possible sign combinations. It is seen from (2.1) 
and the list of simple roots (5.1) that for the dominant weight of a B4 orbit all t he f ;  
are non-negative and f; 

The 24 long roots of F4 are taken to be the 24 long roots of B,, while the 24 short 
roots of F4 are taken to be the 8 short roots of B4 plus the 16 fundamental spinor 
weights [ * t f  if *f *;I. The simple roots of F4 in this basis are those listed in figure 1 .  
It follows from these roots and (2.1) that the Dynkin components m, are related to 
the orthogonal components f; by the equations, 

The inverse equations are 

f l = m , + 2 m , + $ m 3 + m ,  f 2 = m , + m , + f m 3  
f -I f 3 = m Z + 4 m 3  4 - 2 1 1 1 3 .  

(5 .2)  

(5.3) 

The first three F4 simple roots are B, simple roots; the spinor root R, is the replacement 
root. 

The procedure for finding the dominant weight of the F4 orbit of an  arbitrary weight 
M may now be described. If the Dynkin components of M are given, one uses (5.3) 
to find the orthogonal components. One then finds the dominant weight of the B,  

RI R2 R3 R, 

k - 1 ' 1 1  . - . - - - 
2 2 2 2  0 1 - 1 0  0 0 1 - 1  0 0 0 1  

Figure 1. The simple roots of F4 in the E ,  basis 
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orbit of M by changing the signs of the negative orthogonal components and permuting 
the resulting components so that they satisfy f; >J+,  . The first three Dynkin com- 
ponents of this B,-dominant weight must be non-negative. Equation ( 5 . 2 )  is used to 
find m,; if m42 0, the weight is the dominant weight of the F4 orbit. 

If m4<0, one makes an  S,  reflection. The easiest way to d o  this is first to change 
the signs of the last three orthogonal components, calling the new components g, i.e. 
g, = f , ,  g, = -A ( j  > 1). One then transforms the g, to g : ,  from the formula 

g ’ = g  I I - L  2m4. (5.4) 

The reflection could be completed by changing the signs of the last three g : .  However, 
this latter sign change is unnecessary, because we are interested only in the B, orbit 
of the g’. The dominant weight of the B4 orbit of the g’ must be the dominant weight 
of the F4 orbit; i.e. one S,  reflection is sufficient. (This may be verified by considering 
the elements of table 1, to be discussed shortly.) 

Table 1. Weights of the Weyl orbits of F4, in the E ,  basis. The F4 Dynkin components 
m:+, m:+, m:+ and mi+  are denoted by a, b, c and d,  respectively. 

Class I { c > O , d > O }  (24,23,23,21)  
(i) a + 2 b  +?c + d ( 0 )  a + b +4c(5) b + f c ( 6 a )  tc (7b)  

( i i )  a + 2 b + & + $ d ( l )  o + b + i c + 4 d ( 4 )  b + f c + f d ( 5 a )  & c + f d ( 6 b )  
( i i i )  a + 2 b +  c+4d(2)  a + b +  c i f d ( 3 b )  b +  c + f d ( 4 a )  f d ( 7 )  

Class I1 {c > 0, d = 0) (23,22,22,20) 
( i )  a+2b+$c(O)  a +  b + f c ( 4 )  b + t c ( 5 a )  fc (6b)  

( i i )  a + 2 b + c ( 2 )  a + b + c ( 3 b )  b + c ( 4 a )  O(7) 

Class I11 {c = 0, d > 0} (23,20,22, 15)  
( i )  a + 2 b + d ( 0 )  a + b(5) b(6a)  O(7b) 

(ii) a + 2 b + f d ( l )  a + b + f d ( 3 b )  b + f d ( 4 a )  f d ( 6 b )  

Class IV { c = d  =0} (21, 15,20,0)  
( i )  a + 2 b ( 0 )  a + b ( 3 b )  b ( 4 a )  0(6b)  

Consider as an  example the F4 weight M with Dynkin components (-8 4 2 -1). 
From (5.3) the orthogonal components of this weight are [2 -3 5 11. (Square brackets 
are used for orthogonal components.) The dominant weight of the B, orbit of M is 
[ 5  3 2 11. From ( 5 . 2 )  the value of m4 is -1, so this weight is not F4 dominant. An S4 
reflection is needed. We change the signs of the last three components, yielding 
[ 5  -3 -2 -11. We add ilm41 (subtract im,) to each of these components, yielding 

weight is F4 dominant. The Dynkin components are (1 1 1 1). 
If we use the classification parameters discussed in 0 2 ,  the positive roots rTT, that 

satisfy (ri, M)<O are [ l  1001 ,  [O 1 0  I], [ l  0 -1 01, [0 1 -1  01, [0 1 0  -11, [0 1001,  
[+ + - +I, [+ + - -1 and  [+ - - -1, where + and - denote f and -;. The depth of 
M is 9. 

We next consider the problem of constructing the F4 orbits from the dominant 
weights. The construction is easy for two reasons. First, since F4 is a fourth-rank 
algebra, there are only z4 = 16 patterns. Second, the maximum number of B, orbits in 
an F4 orbit is three. It turns out that the expressions for the weights of an  orbit may 

[ f i - 5 - 1 - 1 ]  . Th e dominant weight of the B, orbit of this weight is [y ;if]. This 
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be placed in a form that depends only on whether mf’ and mi’ are zero or positive. 
Thus, there are four classes. 

The dominant weights of all B, orbits in every F4 orbit are given in table 1. The 
four components in each row correspond to a B, orbit, and are arranged so thatJ 
and f ;  2 0. It is seen that there are three B, orbits in an  F4 orbit only if both m:+ and 
mi+ are positive. 

Ail numbers in ordinary parentheses refer to depths. The four successive numbers 
in parentheses following the class label are the depths of the orbits (computed from 
(2.7)), corresponding to the (a ,  b)  patterns (+ +), (+ 0), (0 +) and (0 O ) ,  respectively. 

Before explaining the depths following the components, we note that it is convenient 
to separate the positive roots into two classes. Class one contains the roots for which 
f l  > 0 and class two contains the roots for which f i  = 0. The roots of class two are 
those of the B3 of the components fi, f3 and f,. The roots R I ,  Rz and R3 are the 
simple roots of this B 3 .  The B, depths are easy to compute, so the depths in the table 
all refer to weights that are dominant with respect to this B,. 

The depth number following a component is the depth of the weight in which that 
component is along the first axis, and the other three are in order of decreasing 
magnitude. Thus, in orbit (iii) of class I, the ( 7 )  after the component i d  means the 
depth is seven o f t h e  weight i d ,  a + 2 b + c + i d ,  a + b + c + f d ,  b + c + f d .  The ( 4 a )  after 
the component b + c + i d  means the depth is four if that component is first and a > 0. 
If a = 0, that component is the same as the component to the immediate left, and the 
4 should be neglected. 

For example, consider the orbit a = b = 0, c = d = 2 .  This is of class I, and the 
dominant weights of the three B, orbits are 5111, 4222 and 3331. The numbers in 
parentheses indicate that the depths of the weights 5111, 1511, 4222, 2422, 3331 and 
1333 are respectively, 0, 5, 1, 4, 2 and 7. 

It is not difficult to calculate the depth structures of all orbits of F4. These are 
listed in table 2. The symbols involving + and 0 are the (m:+, m:+, m i f ,  m:+) patterns. 
The underlined numbers are the orbit depths, and the numbers in parentheses are the 
orbit dimensions (numbers of contained weights). The numbers in the columns other 
than the first are the dimensions of the different depths. These dimensions satisfy the 
symmetry property 

D[NI = D [ N m a x -  NI (5.5) 

where D [ N ]  is the dimension of depth N and N,,, is the orbit depth [ N ( M ’ - ) ] .  
Therefore, it is sufficient to give the dimensions up  to depth tN,,, (when N,,, is 
even) or to depth f(N,,,- 1)  (when N,,, is odd).  It is seen that the depth structures 
have the ‘spindle-shape’ properties that are known for level structures of representa- 
tions, i.e. (5.5) together with the condition D( N + 1) 3 ( D (  N ) ) ,  when N < tN,,, , 

(These properties are discussed on p 32 of [ 8 ] . )  
One can list all the weights of an  irrep of F4 by using table 1 together with a table 

of dominant weight multiplicities. For example, consider the irrep (0 0 0 2) of 
dimension 324. One finds from a multiplicity table [4] 

(0 002) ,=1(0002)24+1(0  O 1 O),,+s(1 O O O ) , 4 + 5 ( O O O  1)24+Q(O 0 0 O ) ,  (5.6) 

where the subscript I refers to the irrep, and  the parentheses on the right refer to orbits. 
The underlined numbers are the multiplicities, and  the numerical subscripts are the 
orbit dimensions, obtained from table 2. One can list all the weights in the irrep from 
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Table 2. Dimensionalities of depths of F4 orbit patterns. 

Patterns: + O O O  O + O O  + O + O  + + O O  + O O +  + + + O  + + + +  
o o o +  o o + o  o + + o  o o + +  + + O +  

o + o +  + O + +  
O + + +  

Orbit 
depths: - 
Orbit 
dimensions:(24) (961 ( 2 8 8 )  ( 1 9 2 )  ( 1 4 4 )  ( 5 7 6 )  (1  1 5 2 )  

22 - 20 - 23 - 24 21 - - 20 

Depth Dimensions 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

1 
1 
2 
3 
4 
5 
6 
7 
7 
8 
8 

1 
2 
4 
6 
9 

12 
15 
18 
20 
22 
23 
24 

1 
2 
3 
5 
7 
9 

11 
13 
14 
15 
16 

1 
2 
3 
4 
6 
8 
9 

10 
11 
12 
12 

1 
3 
6 

10 
15 
21 
27 
33 
38 
42 
45 
47 

1 
4 
9 

16 
25 
36 
48 
60 
71 
80 
87 
92 
94 

(5.6) and table 1. For example the orbit (0 0 1 0) is of class I1 in table 1 and contains 
the B4 orbits ( $ t i  i) and (1 1 1 0). 

6. The algebra E6 

In the case of E6 the basis chosen is based on the subalgebra SU(3) x SU(3) X SU(3) = 
SU(3)3. One reason for this choice is that SU(3)3 is used to label states in most unified 
theories of fundamental particles that involve E 6 .  Arbitrary weights of the fundamental 
triplets of the three SU(3) are denoted by K ,  k and K ,  respectively. The specific weights 
of these three triplets, each set given in order of decreasing positivity, are ( A B C ) ,  
( a b c )  and (apy ) ,  respectively. 

The 78  roots of E6 are taken to be the 24 roots of SU(3)3, plus the 54 states of the 
representation ( KkK)  + (KkK) .  ( In  many physical models the representation ( K k )  + 
( K k K )  is used [ 151; the relation between this assignment and that used here is discussed 
at the end of this section.) In  order to make the positivity of each E6 root definite, 
we align the first orthogonal axis in the direction of the weight of the I? triplet. 
The positive roots that are not roots of SU(3)' are then the KkK weights that include 
either A or B, and the d& weights that include c. 

It is straightforward to show that the simple roots of E6 are those listed on the 
Dynkin diagram of figure 2. The root R3 = Bcy is the replacement root; the others are 
simple roots of Su(3)'. Since all S U ( ~ ) ~  roots are orbit is the union 
of complete SU(3)3 orbits. 

The scalar products of the KkK weights and an arbitrary weight M may be 
determined from (4.3a, b, c )  and the corresponding equations for the fundamental 
triplets ( a b c )  and (apy ) .  It follows from the simple roots of figure 2 and (2.1) and 

roots, each 
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Figure 2. The simple roots of E, in the SU(3)3 basis 

(4.3a, 6, c )  that the E, Dynkin components m, are related to the A of the three SU(3) 
by the equations 

ml = A, m2 = Ab 

m4 = A, m5 = A* m6 = A A  

(6 .2)  3 -1  AB - A A  -A,  -2Ab - A ,  -2Ao) .  

The inverse equation for A B  is given by 

AB=m,+2m2+3m3+2m4+m5+m6.  (6.3) 

The orbits and representations of each SU(3) may be grouped in three triality 
classes. For example, the triality of a K orbit is 

AA+2Afl(mod3) or A A  - AB(mod 3). (6 .4)  

The weight set of E,  is the set of vectors with integral Dynkin components. It is seen 
from (6 .2)  and (6.4) that m3 is integral if and  only if the sum of the trialities of the 
three SU(3) is zero (modulo 3). This implies that the weights of E, are the SU(3)3 
orbits such that the trialities of the K, k and K orbits are either all the same or all different. 

There are also three triality classes for weights of E,; the E, triality C is ( M I  + 2 m 2 +  
m 4 + 2 m 5 ) ,  modulo 3 [ 1 6 ] .  It is seen from (6 .1)  that C = (A, + 2 A h )  - ( A e  +2A,), modulo 
3. It follows from (6 .4)  that the E, triality is the SU(3) triality of the k multiplet, 
minus that of the K multiplet. It follows that the weights of zero E6 triality are those 
weights for which the three SU(3) trialities are the same. The weights of E,  triality 1 
are those weights for which the K,  k and K trialities are, respectively, (021) ,  ( 2 1 0 )  or 
(102) .  The weights with E, triality 2 have K, k or K trialities ( 0 1 2 ) ,  ( 1 2 0 )  or (201) .  

Let X *  denote the SU(3) orbit conjugate to X ,  i.e. ( A , A z ) *  = ( A z A , ) ,  and let ( X  Y Z )  
denote the SU(3)3 orbit in which X ,  Y and Z are the dominant weights of the orbits 
of the K,  k and K SU(3), respectively. Clearly, ( X *  Y* Z*)  is in the E, orbit conjugate 
to that containing ( X  Y Z ) .  Furthermore, it is well known that one may obtain E,  
conjugation by reflecting the Dynkin diagram, i.e. by making the simultaneous transpo- 
sitions 

m, % m5 m, S m4. (6.5) 
It is seen from (6 .1)  that the simultaneous transpositions of (6 .5)  are equivalent to 
transposing the k and K SU(3).  Therefore, ( X Z  Y )  is in the E, orbit conjugate to that 
of ( X  Y Z ) .  However, one could have chosen the first orthogonal axis to be oriented 
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parallel to 7, rather than to c. Then it would have been clear that ( Y X Z )  and ( X  Y Z )  
are in conjugate E6 orbits. 

These considerations lead to the conclusion that for any SU(3) orbits X ,  Y and Z, 
all distinct members of the following family of SU(3)’ orbits are in the same E,  orbit: 

( X  Y Z ) ,  ( Y Z X ) ,  ( Z X  Y ) ,  ( X *  z *  Y * ) ,  ( Z *  Y* X * ) ,  ( Y *  x *  Z * ) .  (6.6) 

Of course some of these orbits may be the same. The conjugate E6 orbit contains the 
conjugate SU(3)3 orbits, i.e. ( X Z  Y ) ,  etc. Clearly, if two of the X Y and Z are identical 
the E6 orbit is self-conjugate. 

We now consider the problem of finding the dominant weight of the E6 orbit of 
an arbitrary weight M. A moderately efficient procedure is to follow literally the 
prescription given in [3]. One first finds the dominant weight of the SU(3)’ orbit of 
M. Since all E6 simple roots except R ,  are simple roots of SU(3),, the only Dynkin 
component that may be negative is m,. If m3 < 0, one makes an S3 reflection and 
repeats the procedure until a non-negative m, is obtained. 

This procedure can be made more efficient by using the following modification. 
After determining the dominant weight of the SU(3)’ orbit of M, one examines the 
SU(3)3 orbits related by (6.6), and considers the one whose dominant weight has the 
largest component along the first orthogonal axis. It is seen from ( 4 . 3 ~ )  that this 
component is proportional to ~ A , + A , .  If  there are two or more S U ( ~ ) ’  dominant 
weights in the family of (6.6) that have equally large values of 2A5+AA, neither can 
be E6 dominant; in such a case it is most efficient to choose among these weights one 
with a maximum value of Im,l. When using this modified technique, I have not found 
a case in which more than two S3 reflections are required to obtain E6 dominance. 

I will illustrate the method by finding the dominant weight of the E6 orbit of the 
weight with E6 Dynkin components (6 -5 7 -4 -3 -2). By using (6.1) and (6.3) we 
find that the SU(3)’ Dynkin components ( A )  are (-2 4)(6 -5)(-3 -4), where the order 
of the SU(3) corresponds to KkK. In  order to find the dominant weight of the SU(3)3 
orbit, we use the tableau components f; of (3.3), choosing one f; for each SU(3) to 
have any convenient value. The result is [ 2  4 01 [6 0 51 [0 3 71. The dominant SU(3)3 
weight is obtained by permuting the f of each SU(3), so that they satisfy f ;  S A + ,  , The 
result is [4  2 0][6 5 0][7 3 01. The Dynkin components of this weight are (2 2) (1 5 )  
(4 3). The E, triality class is 1, and the length squared, obtained with the help of (2.2), 
is 16013. 

If  we consider the SU(3)’ dominant weights that are related to this weight by (6.6), 
there are two with the maximum value of 11 for 2AB + A A .  These are (1 5 )  (4 3) (2 2) 
and (3 4) (5 1) (2 2). We choose the latter weight, although the former is equally 
suitable. The m, value, determined from (6.2), is -4, so the weight is not E,  dominant. 
An S, reflection must be made in which four times the root Bcy is added. This means 
that f B ,  fL and f ,  must be increased by 4. The result may be written as 

[7 4 + 4  01 [6 1 41 [4 2 41. (6.7) 

Here the underlined numbers are the added numbers. The transformed weight of (6.7) 
is not SU(3), dominant; the dominant weight of the SU(3), multiplet is [8 7 01 [ 6  4 11 
[4 4 21. If  one wishes, one may subtract any :.-.;:gel f;am the three f values of any 
SU(3). The SU(3), Dynkin components of this weight are (1 7) (2 3) (0 2). 

The value of m3 for this weight is - 2 ,  so one must make another S,  reflection. In 
the notation of (6.7) the new f values are [8 7 + 2  01 [6 4 1 +2]  [4 4 2+2] .  Again one 
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permutes the f values in each SU(3) multiplet to obtain the dominant SU(3)3 weight. 
The A values are then 

(1 8) (2 1) (0 0). (6.8) 

This weight is the dominant weight of the E, orbit, with Eb Dynkin components 

A related problem is that of constructing all the SU(3)3 orbits in the E6 orbit with 
a given dominant weight. One method of solving this problem is a generalisation of 
the method of [3]. One selects any convenient weight $ of the KkK + REI? representa- 
tion, for example the weight Aaa. Equations (6.1) and (6.3) are used to find the 
dominant SU(3), orbit (orbit of the dominant E6 weight). One performs an  S ,  reflection 
on all members o f the  dominant SU(3)3 orbit, listing the resulting SU(3)3 orbits together 
with the orbits related by (6.6). These new orbits are called primary orbits. One may 
use (2.5) to calculate the dimension of the E, orbit, and use this number to determine 
when all SU(3), orbits have been found. 

In some cases not all SU(3)3 orbits may be obtained from one reflection of a weight 
in the dominant orbit. In these cases it is necessary to make S,  reflections of the 
weights in the primary orbits as well. 

If one wishes to construct all E, orbits of a given length L, the following procedure 
is faster than that outlined above. First, all SU(3)3 orbit families of length L are 
determined, where the family relation is (6.6). For each family one lists that dominant 
weight (or one of the dominant weights) with the largest first component, i.e. with the 
largest value of 2AB + A A .  One lists also the dominant weights of the E ,  orbits of length 
L, either by referring to published tables or by using (2.2). Equations (6.1) and (6.3) 
are used to identify the SU(3)3-dominant weights that are E ,  dominant. One then 
applies an  S,  reflection to the other SU(3)-dominant weights, as illustrated above (6.7). 
If the SU(3)3 orbits are considered in order of decreasing 2AB+AA, then one S3 
reflection will serve to identify the E6 orbit of each SU(3), orbit. This follows because 
if a weight is SU(3), dominant, and M, < 0, then an  S3 reflection will increase 2 A B  + A A ,  
and the resulting weight can be made SU(3)3 dominant by reflections generated by 
simple roots other than R3.  These latter reflections d o  not change the value of 2AB + A A .  
Finally, as a check, one adds the dimensions of the SU(3)’ orbits in each Eb orbit, 
and compares the sum with the result obtained from (2.5). 

This method has been used here to calculate the SU(3)3 content of all orbits of E,  
of length no greater than (2 0)”’. Table 3 contains the E, orbits of triality zero. Each 
number with a wavy underline in the table represents three times the length squared 
of the orbit, while the symbol in curly brackets denotes the Dynkin components in 
shorthand form. Thus (1’5) denotes the E, orbit with Dynkin components ( 2  0 0 0 1 0). 
The number following the curly brackets is the dimension of the orbit, expressed in 
prime factors, and the underlined number following that is the depth of the orbit. 

Each of the SU(3I3 orbit symbols ( A A A B ) ( A , A , , ) ( A , A p )  represents the set of (one, 
two, three or  six) distinct orbits in the family related by (6.6). The orbit given is one 
of the family that has the maximum value of 2AB + A A .  The underlined number following 
the orbit symbol is the depth of the weight given. The dominant SU(3)3 orbit is listed 
first. 

An orbit of E,  triality zero that is not self-conjugate is denoted by a n  asterisk after 
its Dynkin symbol, i.e. { 12}*. In  such a case the conjugate orbit, obtained by making 
the diagram reflection of (6.51, is of the same length. Only one orbit of a conjugate 
pair is listed, since the other may be obtained by making the simultaneous transpositions 

(2 1 1 0 0  1). 
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Table 3. E, Weyl orbits of triality 0 and length no greater than (2 O ) ” 2 .  

Table 4. E,  Weyl orbits of triality 1 and length less than (2  O ) ” * .  
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A, fs A,, Ab e A,. For example, the orbit conjugate to (12) is (45). The dominant 
weight of this orbit is (0 3)  (0 0) (1 1). 

Table 4 contains the corresponding information for the E6 orbits of triality class 
1 .  The conjugate orbit of any orbit of class 2 is of class 1 ,  so it is unnecessary to 
provide a table for class 2. 

For any weight M it is straightforward to find the positive roots T,  that satisfy 
(T,, M )  <0, and so contribute to the depth. For example, if the weight is (3  3) ( 1  1 )  
(00)  the positive roots are Bciu, BcP and Bcy. The depths of some of the SU(3)3 
dominant weights related by (6.6) to those listed in tables 3 and 4 are greater than 
those of the tables. For example, the depth of the weight (0 0) (3 3) ( 1  1 )  is 12. 

An irrep may be constructed by making use of one of the tables of this section and 
a multiplicity table. I take as examples the irreps 351 (4) and 351’ (52), where the 
curly brackets contain the Dynkin symbols in the notation explained earlier: These 
irreps are chosen because they occur in the direct product 27* x 27* where 27* is the 
irrep { 5 } .  Therefore, as discussed by Rosner [17], Higgs particles in these irreps may 
contribute mass to fermions in the 27* in a grand unified particle model. 

A published multiplicity table yields the results [4], 

(411 = 1{4)216 + 3{112, 
(6.9) 

where the subscript I refers to the irrep, and the curly brackets on the right refer to 
orbits. The underlined numbers are the multiplicities, and the numerical subscripts 
are the orbit dimensions, obtained from table 4. One can list all the weights in the 
irreps from (6.9) and table 4. 

In many models in which the algebra E6 applies to fundamental particles, those 
roots of E, that are not roots of SU(3)3 are identified with the SU(3)3 representation 
(3  5 5 )  + ( 5  3 3)  rather than (3 3 3) + ( 5  3 5 )  [ 151. The relation between the corresponding 
orbits of these two different SU(3)3 embeddings may be understood from the following 
construction. Let the E6 roots that are not SU(3)’ roots be the weights (& + K k K ) .  
The first orthogonal axis is chosen to be in the direction of the A weight. The positive 
roots of E6 that are not SU(3)3 roots are then the K& weights that contain A and the 
KkK weights that contain either of the 3 weights or e. It  is straightforward to show 
that the simple roots, corresponding to the roots of the Dynkin diagram of figure 2 ,  are 

{52}1 = 1{52},,+1(4},16.t4{1}2, 

R I  = ( a 6 )  R2 = (bP) R3 = (Bey) 
R4 = ( P T )  R5 = (4, Rh = ( B C ) .  

It is seen from these equations and (4.3~2, b, c)  that the relations between the E6 and 
SU(3)3 Dynkin components may be obtained by making the transpositions A A  e A B  
in (6.1) and (6.2). Therefore, the orbits may be obtained by transposing the two Dynkin 
components of the first SU(3) in tables 3 and 4 and (6.6). 

7. The algebra E, 

In the case of E, the subalgebra is chosen to be SU(8) = A , .  I use the notation of 0 3, 
numbering the weights of the fundamental octet representation of SU(8) 1-8 in order 
of decreasing positivity. The roots of E ,  are taken to be the 63 roots of SU(8) plus 
the 70 weights of d4, the completely antisymmetric combination of four weights of 
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the fundamental octet. The weights of d, are denoted by listing the four octet weights 
that are present, i.e. ( i j k l ) .  In order to make the positivity of all these weights definite, 
I make the further assumption that the first orthogonal axis is oriented in the direction 
of the octet weight 1 .  The positive weights of d4 are then those that contain weight 
1 .  It is straightforward to show that the simple E7 roots are those listed on the Dynkin 
diagram of figure 3.  The d, weight R7 = ( 1  6 7 8) is the replacement root. All other 
E7 simple roots are SU(8) simple roots. 

It follows from figure 3 ,  ( 2 . 1 )  and ( 3 . 1 )  that the E7 Dynkin components mi are 
related to the SU(8) Dynkin components Ai by 

ml=A7 m 2  = A 6  m3 = A S  

m4 = A 4  m5 = A, m6 = A 2  
( 7 . 1 )  

( 7 . 2 )  
The expression for m7 is simpler when written in terms of the tableau components of 
( 3 . 3 ) ,  i.e. 

7 -1 - 2 ( A 1 -  -2A4-3A5 - 2 A 6 - A 7 ) .  

(7 .3)  

(7.4) 
Since all SU(8) roots are E7 roots, every weight of E7 must be an SU(8)  weight. It is 
required further that m7 be an integer. It is seen from ( 7 . 3 )  that this implies F = 2k,  

-1 
7 - 2 ( f i  + f 6 + f 7 + f * - f 2 - f ~ - f 4 - f 5 ) ,  

The inverse equation for A I  is 

A I  = m ,  + 2 m 2 + 3 m 3 + 2 m , +  m 5 + 2 m 7 .  

R7 

1 6 7 8  

Figure 3. The simple roots of E ,  in the SU(8) basis. 
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where k is an  integer and 
8 

F = C f ; .  (7.5) 
1 = I  

The octality congruence number of SU(8) is F modulo 8, so the weights of E,  are the 
SU(8) weights of even octality class. 

Since R, is of octality class 4, weights differing by 4 in octality may be in the same 
E, orbit. Therefore, there are two E,  congruence classes, duality-0 weights that have 
SU(8) octalities of either 0 or 4, and duality-1 weights that have octalities of either 2 
or 6. It is well-known that the E, duality corresponds to m,+ m6+ m7, modulo 2 [16]. 
In order to demonstrate that these two duality definitions are equivalent, we note that 
the SU(8) octality C may be written in terms of the A in the following way: 

7 

C = F - 8f8 = 1 j A ,  modulo 8. 
, = I  

Since the root R,  is of octality 4, we are interested in C modulo 4. If (7.1) and (7.4) 
are used, C modulo 4 may be written 

2( m,+ m6+ m,) modulo 4. 

Therefore, the even and odd values of m,+ m,+ m7 d o  correspond to the two duality 
classes as defined in the SU(8) basis. 

Ordinary parentheses and square brackets will be used, respectively, for SU( 8)  
Dynkin components A ,  and tableau componentsf;. As discussed in 8 3 some convention 
must be used to determine one f;. The convention used in this section is 

F = 0 , 2 , 4 o r - 2  (7.6) 
for weights of octality 0, 2 ,  4 or 6, respectively. 

If A,  are the Dynkin components of the dominant weight of an SU(8) orbit, the 
components A T  of the dominant weight of the conjugate orbit are given by A T  = A s - ,  . 
For dominant weights of the octality classes 0, 2 and - 2 ,  the corresponding relation 
for the tableau components is 

f ? = - f 9 - , .  (7.7a) 

For orbits of octality 4, the convention that F = 4 implies that the relation is 

f l * = - f 9 - , + 1 .  (7.76) 

Every orbit of E,  is self-conjugate, so conjugate SU(8) orbits necessarily are in the 
same E,  orbit. 

We next consider the problem of finding the dominant weight of the E,  orbit of 
an  arbitrary weight M. The method used is similar to that of 8 6. One writes the weight 
in the SU(8) basis and determines the dominant weight of the SU(8) orbit. All E ,  
simple roots except R7 are SU(8) simple roots, so only the Dynkin component m, may 
be negative. If m, < 0, one makes an S ,  Weyl reflection, and  continues. The procedure 
may be followed for any SU(7) orbit. However, one can improve the efficiency by 
considering each SU(8) orbit together with its conjugate orbit. If the dominant weight 
of either of these two orbits has a larger first orthogonal component than that of the 
other, one applies the process to the weight with larger first component. The first 
component is proportional to the quantity 

f, -$E  (7.8) 
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I will illustrate the procedure by finding the dominant orbit weight of the weight 
M with E, Dynkin components (8  1 -9 8 0 -6 2 ) .  By using (7.1) and  (7.4) we find the 
SU(8) Dynkin components A ,  are (3 -6 0 8 -9 1 8). In order to determine the tableau 
components, one chooses f l  or f 8  arbitrarily, uses (3.3), and then adds or subtracts the 
appropriate integer from each f ;  so that F is 0, 4, 2 or -2, as required by ( 7 . 6 ) .  The 
result is [0 -3 3 3 -5 4 3 -51. Since F = 0 the weight is of E, duality class 0. One may 
use (3.1) to find that the length squared is 102. 

The dominant weight of the SU(8i orbit is obtained by ordering thef;  by decreasing 
value. This weight is [ 4 3  3 3 0 -3 - 5  -51. It is seen from ( 7 . 7 ~ )  and (7.8) that the 
first component is larger for the dominant weight of the conjugate orbit, so we consider 
this weight, [5 5 3 0 -3 -3 -3 -41, underlining components f2 through f 5  for con- 
venience. The component m,, calculated by using (7.3), is -5 .  Since this is negative, 
the weight is not E ,  dominant. An S ,  reflection must be made. The reflection may be 
made by adding iIm71 to the components (1  6 7 8)  and subtracting t1m-l from the 
underlined components (2 3 4 5 ) .  If Im,j were even this would be the best procedure. 
However, for odd Im,i this procedure introduces fractions, and leads inevitably to 
adding (or subtracting) some number from all f ;  to comply with the convention of 
(7.6). For Im,i odd it is easier to write Im,l = a + b, where a and  b are adjacent integers, 
and add  a to the components (1 6 7 8) and subtract b from the components ( 2  3 4 5 ) .  
If we add  3 to the (1 6 7 8)  components and  subtract 2 from the others, we obtain the 
weight [8 3 1 -2 -5  0 0 -13, a weight of octality 4. The dominant weight of the SU(8) 
orbit is [8 3 1 0 0 -1 -2 -51. For this weight m7 = -2, so E, dominance has not been 
obtained. We make a second S,  reflection by adding 1 to the components not underlined 
and subtracting 1 from the underlined components. The resulting weight is 
[9 2 0 -1 -1 0 -1 -41. The dominant weight of this SU(8) orbit is 

(7.9) 

This weight is E,  dominant, since m, = 1. The SU(8) Dynkin components are 
(7 2 0 1 0 0 3), and the E, Dynkin components, obtained by using (7.1) and (7.2), are 
(3 0 0 1 0 2 1). I have not found a weight such that this procedure requires more than 
two S,  reflections. 

If one wishes to find all the SU(8) orbits in an  E ,  orbit, or to find all weights in 
all orbits of a given length, one may use procedures analogous to those described in § 6. 

The SU(8) orbits contained in each E, orbit of duality class 0 and of length no 
greater than ( 2  O ) ” >  are listed in table 5.  The numbers with wavy underlines are twice 
the length squared of the E, orbits; the symbols following these have the same meaning 
as in tables 3 and 4. The dominant weights of the SU(8) orbits are given in terms of 
the f components. I f  the SU(8) orbit is not self-conjugate, only one of the conjugate 
pair is given, always one with a maximum value of the first orthogonal component. 
The underlined number following each SU(8)-dominant weight is the depth of the 
weight. If the SU(8)  orbit is not self-conjugate, a second underlined number gives the 
depth of the dominant weight of the conjugate orbit. 

Table 6 contains the corresponding information for the E ,  weights of duality class 
1. In this case none of the SU(8) orbits is self-conjugate. 

For any weight M it is easy to determine the positive roots T,  that satisfy the 
condition (T, ,  M)<O,  and so contribute to the depth. The scalar product of the d4 
root ( 1  6 7 8)  with a weight is given by (7.3); corresponding equations apply to other 
weights of d4. It follows that the positive root (1 i j k )  satisfies the condition (1 ijk, M )  < 
0 if and only i f  fi+J;+$+fk < t F .  For example, if we take M to be the weight 

[9 2 0 0 -1 -1 -1 -41. 
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Table 5. E, Weyl orbits of duality 0 of length no greater than ( 2  

9 IO} 1 0 24 {3} 253*S 7 3 6 { i 3 j 2 . 3 * 7 a  

4 { l }  2 ’ 32733 
0 0 0 0 0 0 0 0 Q  3 0 0 0 0 - 1 - 1 - 1 0 , 1 4  3 0 0 0  0 0 0  -3 Q 

3 1 1 1 0 0 -1 -1 2 , 9  2 2 2 2  -1 -1 -1 -1 4 

3 2 0 - 1 - 1 - 1 - 1 - 1 0 , 9  
1 0 0 0 0 0 0 - l Q  2 1 1 0 0  -1 -1 -z 36 {562} 2’3’7 43 

- 1 1 1 1 0 0 0 0 ~  2 2 1 1 1 - 1 - 1 - 1 1 0 , 9  

2 1 1  0 0 0 0 0 0 , 9  
28 {72} 2632 42 - 3 3 0 0 0 0 - 1  - 1 4 , s  

36 {25} 2533S . 7  2- 
8 {S} 223’7 42 

4 0 0 0 0 0 0 0 0,15 
1 1 0 0 0 0 - 1 - 1 4  3 1 1  1 1  -1 -FiQ 4 1 1 0 0 0 - 1 - 1 0 , 1 2  

12 {2} 25327 47 28 {46} 26337 2 3 1 1 0 -1 - 1  -1 -,9 
3 1 0 0 0 0 -2 -2 4 , 1 0  
3 2 2 0 0  -1 -1 - r 1 1  
3 2 1 1  0 0 - 1  -2 5- 
2 2  1 0 0 - 1  -2-28  

2 0 0 0 0 0 - 1 - 1 0 , l O  
2 1 1 1 0 0 0 - 1 3 -  
1 1 1  0 0  -1 -1 -1 2 

2 2 0 0 0  0 0 0 0,5 

3 1 0 0 0 0 0 0 0 , 1 5  
2 1 0 0 0 - 1 - 1 - 1 1 , 8  
2 1 1 1 I 0 - 1  -1 5 , 6  

3 1 0 0 -1 -1 -1 -1 0,12 
3 2  1 0 0 0 - 1  -1 3,8- 
2 2 0 0 0 - 1  -1 -n5 

!? {62} 237 22 2 2  1-1  -1 -1 -1 -110,13 
28 { 12) 26327 48 - 49 {47} 2632S ‘ 7  54 

16 {67} 26327 48- 3 0 0 0 0 0 - 1  -20,lO 4 0 0 0 - 1 - 1 - 1 - 1 0 , 1 5  
3 1 1 1 0 0 0  - 2 3 -  4 1  1 1 0 - 1  -1 - 1  1 , r  
2 1  1 1  -1 -1 -1 - 2 4  3 1 1 0 0 - 1  -2 - 2 w  
2 2 2  1 0 - 1  -1 -1 2 3 2 1  1 1  -1 -1 - 2 -  

.. 

- 
16 {12} 2 ’ 327 33 32 {167} 27337 3 2 1  1 1  1 -2-2-213,lO 

2 0 0 0 0 0 0 - 2 0  4 1 0 0 0 0 0 -1 0 , l S  $9 {26*} 26337 2 - 
1 1  1 1  - 1  - 1  -1 -1 4 

3 1  1 0 0 0 0 - 1 0 , 9  
2 1 0 0  0 0 -1 -24 
2 1 1 0 - 1 - 1 - 1 - 1 4 , l O  3?{52}2233742 $9 {125} 2’3’5 . 7  3 

3 1 1 - 1 - 1 - 1 - 1 - 1 0 , 9  4 1 1 0 0 0 0 - 2 0 , 9  2 2  1 1  0 0 - 1  -1 6 
2 2 0 0 0 0  -2 -24  3 1 0 0 0 0 -1 -34 

3 2 2 1  -1 -1 -1 -14,lO 

3 1 0 0 0  -1 -1 T, 8 4 2 0 0 0 0 -1 -1 0 , l l  
?(,{15}2’3’5.72 3 1 1  1 1  0-1  - 2 5 , 6  3200-1-1-1-,6 

3 2 1 1 0 -1 -1 -% 9 3 1 1  1 1  1 - 2 - 2 5 , 1 0  
3 3 1 0 0 -1 - 1 - r 9  - 2 1 1 1 0 - 1 - 2 - 2 -  - 

- 
- 

?$ {162} Z33’7 43 
3 2 0 0 0 0 0  -1 0 ,5  
2 2 0 0 - 1 - 1 - F 1 4 , 7  2 2 1 1 -1 -1 -2 -2 6 - 

[2  2 1 1 -1 -1 -2 -21 of the length-(2 0 ) ” 2  orbit {125}, the positive roots that satisfy 
the condition are (1 3 7 8), (1 4 7 8), (1 5 6 7), (1 5 6 8), (1 5 7 8) and (1 6 7 8). 

One may construct an E ,  irrep by using table 5 or 6 and a multiplicity table. I 
take for an example the 912-dimensional irrep {7}, since fermions are associated with 
this irrep in one model of particles [18]. Using a multiplicity table [4] one writes 

(711 = 1{7}576+ 6{6}56 (7.10) 

where the notation is the same as in  (6.9). Table 5 and (7.10) may be used to write 
the weights of the irrep. 

8. The choices of the subalgebras H 

In this section the reasons are given for the specific choices of the subalgebras H used 
in 054, 5, 6 and 7. The method developed in [3] and used here requires that H satisfy 
three criteria, listed below. 

(1) H must be a classical algebra, or the direct product of a classical algebra and 
G 2 ,  so that the orbit of H of an arbitrary weight may be determined quickly. 

(2) H must be a regular subalgebra. If it is not, then one cannot find a set of 
simple roots of G, all but one of which are simple roots of H. In such a case the 
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Table 6. E ,  Weyl orbits of duality 1 and length less than (2 0)”’. 
~~ 

3 {6} 2’7 21 21 {57} 26337 52 19 {27} 26337 
1 1 0 0 0 0 0 0 0 , 5  3 0 0 - 1  -1 -1 -1 -10,15 4 0 0 0 0 0 - 1  - l 0 , 1 5  

?{7}2632Q - 3 1 1 0 0 - 1  -1 -1 1 , l o  3 0 0 0 0 - 1 - 2 - 2 1 , l O  
2 0 0 0 0 0 0 0 0 , 1 5  2 1 0 0 0 - 1 - 2 - 2 4 7  3 1 1 1 0  -1 -1 -2w 

2 1  1-1  -1 -1 - 1 7 6 , 9  

3 1 0 0  0 0 0 -2 0,s 
2 2 1 1 - 1 - 1 - T 1 1 4 , 7  3 2 0 0 0 0 - 1  -24 ,5  

2 2 - 1  - I  - I  - I  - I  - l 0 , 5  

3 1-1  -1 -1 -1 -1 -1 0,15 

2 2 0 -1 -1 - I  - 1 ?6,5  

2 1  1 0 0 - 2 - 2 - 2 -  - 

3 1 0 - 1 - 1 - 1 - 1 - 2 0 , 9  

1 0 0 0 0 - 1 - 1 - 1 1 , 6  - - 

1 1 0 0 - 1 - 1 - ~ 1 4 , 7  - - 

!! {16} 2’3’7 43 2 2  { 126} 23337 43 !!{156}24335.7a 

- 2 1 0  0 0 0 0  - 1  0,5 

_ -  15 {4} 26327 3 21 {63} 2’7 21 3 2 1 0  -1 -1 - 1  -14,lO 
2 2 0 0 - 1  -1 -2-2- - 2 0 0 0 - 1  -1 - I  -lO,12 

1 1  1-1 - 1  -1 -1-1 10,13 

- 
2 1 1 0 0 0  -1 - 1  3.7- ?! {627} 26327 48 39 { 127} 26327 48 

4 0 0 0 0 0 0 - 2 0 , 1 5  

2 1 1 1 -1 -2 -2 -% 7 

- _ -  19{17}2632743 3 2 0 0 0 - 1 - 1 - 1 1 , s  - 3 0 0 0 0 - 1 - 1 - 3 1 , 6  

- - 3 0 0 0 0 0 0 - 1 0 , 1 5  
2 0 0 0 0  -1 -1 -,6 
2 1 1  1 0 - 1  -1 -1- 

,3! {14} 26325 , 7 2 29 {36} 27325 7 56 
3 0 0 0 - 1  -1 -1 -2 0,12 

3 1 1  1 - 1  - 1  - 1 7 4 , 1 3  

4 1 0 0 0 -1 -1 -1 0,14 

3 2 1 0 0 - 1  -1 - 2 5 , F  

- A? {56} 2’3’7 43 3 1 1 0 0 0 - 1  -23,7- 3 1 0 0  -1 -1 -2 - T I 0  
2 1 0 - 1  -1 -1 -1 - lO,9  
2 2 0 0 0 0 - 1  -14 ,5  2 1 1 0  -1 -1 -2 -2- 3 1 1 1 0 0 - 2 - 2 5 , 9  

22 {26} 26337 52 - 2220-1-1-1-110,13  2 2 0 0 0 - 2 - 2 - ~ 0 , 1 1  
3 1 0 0 0 0 - 1 - 1 0 . 1 1  2 2 1 - 1 - 1 - 1 - 2 - 2 9 , l l  

2 1 0 0 -1 -1 -1 -,6 
2 2  1 0 0 - 1  -1 -1 7 . 9  

- 

- - 

2 0 0 0 0 0 - 2 - 2 3 3  
__ 

process of finding the dominant weight of an orbit of G of an arbitrary weight would 
be lengthened, in general. 

(3) The rank of H should be equal to the rank of G, exclusive of U ,  factors. When 
this requirement is met, finding the dominant H-orbit weight often leads to a weight 
of higher positivity than would result simply from making Weyl reflections associated 
with the simple roots of G that are simple roots of H. This point is illustrated in [3]. 
For each exceptional group, these three requirements limit the number of candidates 
for H to a small number. 

For each basis considered one can assign an efficiency number 8, defined to be 
the maximum number of entries needed for an orbit of the exceptional algebra G in 
a table such as those of 096  and 7.  Clearly, it is desirable that 8 be as small as 
possible. I t  can be shown that 8 is the number of entries present for a maximal orbit 
of G, and is given by the formula 

where D ( X )  is the order of the Weyl group for the algebra X and NF is the maximum 
number of H orbits related by a simple symmetry relation of the type of (6.6). NF is 
6 for the E,  basis used here, but in most cases it is 1 or 2. If all orbits of G are 
self-conjugate, and some orbits of H are not self-conjugate, then N F  is at least 2. 

It is clear that the SU(3) basis used for G2 in 0 4 is optimal, since the three conditions 
discussed above are met and the efficiency is 2. I list below the efficiencies corresponding 
to several possible choices of H for each of the other four exceptional algebras. For 
illustrative purposes, some bases are included that do not satisfy all three of the 
requirements listed above. Subalgebras that satisfy the three requirements are denoted 
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with an asterisk. The number in parentheses is the efficiency. The first subalgebra 
listed for each G is the one used in this paper (or in the treatment of Es in [3]): 

G =  F4 case: 

G = E,  case 

G = E7 case: 

G = Es case: 

B2(3), C,*(3), C3xAT(12),  G z x A 1 ( 4 8 )  

A:*(40), AS x A7(36), D, x U,(27), F4(45) 

AF(36), D, x A7(63), A5 x AT(336), E6 x U,(28)  

D:( 1 3 9 ,  A:(960), E ,  x A1(120). 

Some subalgebras that satisfy the three requirements have been omitted from the lists; 
in these cases the efficiencies are many times larger than rhose of the subalgebras chosen. 

In the cases of E ,  and E8 it is seen that of the bases satisfying the three requirements, 
the chosen basis is significantly more efficient than the others. Bases involving excep- 
tional subalgebras may be useful in particular models involving broken symmetry. For 
example, if E8 is broken to E , ,  the E ,  x A, basis may be useful. However, since the 
Weyl orbits of E, are not transparent, the effective efficiency in such a case is 120 
times the efficiency of the basis used for E 7 .  

In the case of F4 the B4 and C, bases are significantly more efficient than any other. 
The reasons for choosing the B, basis are discussed at the beginning of 5 5. In the 
case of E6 the first two bases listed satisfy the three requirements and  are of comparable 
efficiency. The A: basis was chosen because this subalgebra is used in many theories 
of particles, as discussed in § 6. The AS x A, basis is useful, and  has been studied by 
King and Al-Qubanchi [19]. 

In a particle model that involves E, + En-l symmetry breaking, it might be con- 
venient to use more than one basis. I illustrate by considering the case n = 7. One 
might employ the A, basis of figure 3 and  also an  E6 x U1 basis. This latter basis may 
be obtained by following the prescription of § I1 of [lo], i.e. by identifying the E6 
simple roots with all the roots of figure 3 except R , ,  and assigning these roots to the 
dimensions 2-7. If the R S  of figure 3 is the fifth simple root of E,, one chooses for 
R6 the weight {x  + (0 0 0 0 -1 O ) } ,  where the numbers in parentheses are E6 Dynkin 
components and x is a vector parallel to the positive first axis. The E6 weight is of 
the same length as (1 0 0 0 0 0); it is seen from table 4 that this length is ( $ ) I / * .  Therefore, 
the length of x is ( $ ) I ” ,  so that the E, root R6 is of length a. If one then uses the 
basis of 0 6 for E 6 ,  it is seen from (6.1) and (6.3) that the weight (0 0 0 0 -1 0) is (CE). 
With this basis the two expressions for the roots R , - R 7  of figure 3 are 

78 = ab; 67 = bc, 56 = Bcy, 43 = /37, 34 = CID, 23 = x + ( C G )  ( 8 . 1 ~ )  

and 

1 6 7 8 = A B .  (8. lb)  

These equalities are not consistent with the exact assumptions made concerning 
the orientation of the orthogonal axes in various sections of this paper. However, the 
orientation assumptions are used only to find the simple roots, and  then may be 
disregarded. Therefore, one can use the equalities of (8.1) to analyse an  E7 + E6 model. 

A similar technique may be used in a model with Es+ E,  symmetry breaking. 
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